Model of OFF-ON transition and SET process in phase-change memory

Semyon D. Savransky The TRIZ Experts, 6015 Pepper Tree Ct., Newark, CA 94560, USA E-mail: chalcogenide_glasses@yahoo.com

Resistivity variation between amorphous and (poly)crystalline states of chalcogenide film (ChF) can be utilized in non-volatile memories [1,2] based on Ovshinsky effect [3] which is already used for discrete devices [4]. Regardless initial state of sputtered film the first RESET step leads to the vitrification of a ChF in active area of a memory cell. We analyze the following scenario: a) Auger recombination of electrons at -U centers and free holes \Rightarrow b) change of atoms positions due to shake-up effect \Rightarrow c) release of polaron energy during -U centers destruction and Fermi level de-pinning \rightarrow d) generation of localized high frequency vibrations in clusters at former -U centers \rightarrow e) local overheating and expansion of these medium range clusters \rightarrow f) delayed heat transfer to compressed intercluster regions \rightarrow g) decrease of the activation energy for conductivity \rightarrow h) increase of carriers concentrations (and probably mobility) due to steps e, f, and $g \rightarrow i$) the OFF-ON transition as the major stages of the electron induced thermal transformation in atom subsystem between the vitreous and crystalline states of ChF [5]. Distinctiveness of -U centers in Ge₂Sb₂Te₅ film is discussed. This scenario allows to explain various features observed during the OFF-ON transition in first and second generations of ChF [1-3]. It is shown for instance that instability of dynamic negative resistance observed often during the first firing of ChF [2] can be described in the terms of Auger recombination processes. The pressure and light influences on the OFF-ON transition in ChF are discussed, the importance of low-temperature data is emphasized. The collective re-arrangement of atoms and vacancies (probably Te and Sb/Ge in Ge₂Sb₂Te₅ film) explains abnormally high activation energies (~ 2 eV to compare with optical gap $\sim 0.8 \text{eV}$) and frequency factors ($\sim 10^{25}$ to compare with typical phonons values $\sim 10^{13}$ Hz) often observed in experiments modeling SET process. We find relations between ChF parameters and the vitrification temperature, melting point and maximum crystallization temperature that allow better select ChF for phase-change memories.

References:

- [1a] Stefan Lai "Current status of the phase change memory and its future" / Proceedings of the 2003 International Electron Devices Meeting. Technical Digest p. 10.1.1 10.1.4.
- [1b] Agostino Pirovano, Andrea L. Lacaita, Augusto Benvenuti, Fabio Pellizzer, and Roberto Bez "Electronic Switching in Phase-Change Memories" / IEEE Transactions On Electron Devices, 2004 Vol. 51, N 3, p. 452-459.
- [2] Wally Czubatyj and Sergey A. Kostylev, in Physics and Applications of Disordered Materials /Editor: Mihai A. Popescu / INOE Publishing House, 2002, 390 pp.
- [3] Stanford R. Ovshinsky "Reversible Electrical Switching Phenomena in Disordered Structures" / Physical Review Letters, 1968, Vol.21, N 20 p.1450-1453.
- [4] Semyon D. Savransky "Memory switching device" / USSR Patents N 997099, 1112925, 1136647,1342277, 1336107 (1981-1987).
- [5] Semyon D. Savransky "Model of conductivity transition in amorphous chalcogenides induced by Auger recombination" / J. Ovonic Research, 2005 Vol. 1 N2, p. 25-33.